Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents
نویسندگان
چکیده
We introduce a framework for topical keyphrase generation and ranking, based on the output of a topic model run on a collection of short documents. By shifting from the unigramcentric traditional methods of keyphrase extraction and ranking to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. Our method defines a function to rank topical keyphrases so that more highly ranked keyphrases are considered to be more representative phrases for that topic. We study the performance of our framework on multiple real world document collections, and also show that it is more scalable than comparable phrase-generating models.
منابع مشابه
KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles
We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four crite...
متن کاملAutomatic Subject Metadata Generation for Scientific Documents Using Wikipedia and Genetic Algorithms
Topical annotation of documents with keyphrases is a proven method for revealing the subject of scientific and research documents. However, scientific documents that are manually annotated with keyphrases are in the minority. This paper describes a machine learning-based automatic keyphrase annotation method for scientific documents, which utilizes Wikipedia as a thesaurus for candidate selecti...
متن کاملRanking Techniques for Keyphrase Extraction
This thesis focuses on the task of extracting keyphrases from research papers. Keyphrases are short phrases that summarize and characterize the contents of documents. They help users explore sets of documents and quickly understand the contents of individual documents. Most academic papers do not have keyphrases assigned to them, and manual keyphrase assignment is highly laborious. As such, the...
متن کاملFinding nuggets in documents: A machine learning approach
However, many text mining applications do not have adequate natural language processing ability beyond simple keyword indexing, and as a result, there are too many textual elements (words) included in the analysis. We argue that noun phrases as textual elements are better suited for text mining and could provide more discriminating power, than single words. Discourse representation theory (Kamp...
متن کاملAutomatic keyphrase annotation of scientific documents using Wikipedia and genetic algorithms
Topical annotation of documents with keyphrases is a proven method for revealing the subject of scientific and research documents to both human readers and information retrieval systems. This article describes a machine learning-based keyphrase annotation method for scientific documents which utilizes Wikipedia as a thesaurus for candidate selection from documents’ content. We have devised a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014